Higgs Spin / Mixture Overview

Andrei Gritsan (JHU & CMS/LPC)

for

Sally Dawson (BNL), Heather Logan (Carleton), Rick Van Kooten (Indiana), Jianming Qian (Michigan), Chris Tully (Princeton)

5 April 2013

Higgs Boson Study Group Snowmass Energy Frontier Workshop

Brookhaven National Laboratory, Upton, NY

From the Princeton workshop and the next steps

Higgs Snowmass Workshop, 14−15 January 2013, Princeton

http://physics.princeton.edu/indico/internalPage.py?pageId=1&confId=127

- Session on Spin and CP Mixtures
 - Theory overview (Kirill Melnikov)
 - CMS view (Seth Zenz)
 - ATLAS view (Kirill Prokofiev)
 - Lepton / photon colliders: pending contributions (see today)
- Discussed main ideas for Snowmass studies
 - ATLAS+CMS+ have provided good framework for projections
 - Lepton / photon colliders: were seeking active projections
- Next important milestone: have preliminary studies ready by June 15

Two main paths: spin and mixture

- Two main paths to study "H(125)"
 - (1) test of exotic spin > 0 assignments / hypothesis testing LHC is excluding already \Rightarrow interest may be reducing nonetheless, identify benchmark models for comparison
 - (2) measure mixture: tensor structure of interactions (spin-0) equivalent effective Lagrangian or scattering amplitude approaches

(2a)
$$ZZH$$
, WWH (SM g_1), $Z\gamma H$, $\gamma\gamma H$, ggH (SM g_2), or 0^- (g_4)

$$A_{VV} \propto g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3 f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

(2b)
$$\tau^+ \tau^- H, \mu^+ \mu^- H, b\bar{b}H, t\bar{t}H, ..$$
 $A_{f\bar{f}} \propto \frac{m_f}{v} \bar{u}_2 \left(\rho_1 + \rho_2 \gamma_5\right) v_1$

(field strength tensor $V^{\mu\nu} \Leftrightarrow f^{(i),\mu\nu} = \epsilon_i^{\mu} q_i^{\nu} - \epsilon_i^{\nu} q_i^{\mu}$)

"Golden" comparison: pp vs e^+e^-

- LHC: $gg \rightarrow H$
- H-factory: $ee \rightarrow ZH$ ILC: $eeZZ \rightarrow eeH$

- Golden ZZH coupling as a benchmark (pp vs. H-factory vs. ILC)
 - mostly decay on LHC and production on e^+e^-
 - kinematics: $m(Z_i)$, θ_i , Φ for spin=0; add θ^* and Φ_1 for spin $\neq 0$
 - $-m(Z^*) \Leftrightarrow e^+e^-$ threshold scan
 - may combine with WWH, but cannot use $e^+e^-WW \rightarrow \nu\bar{\nu}H$
 - no strict boundaries: Z(W)H and VBF contribute to LHC, ILC
 - fermion couplings discussed separately

Path 1: Spin > 0

• Several test models adopted by LHC for ZZH, WWH, $\gamma\gamma H$, ggH

model	X production	comments		
0-	any	pseudoscalar		
1+	q ar q o X	exotic pseudo-vector, not for $\gamma\gamma H$, ggH		
1-	q ar q o X	exotic vector, not for $\gamma \gamma H$, ggH		
$2^+_{m \ q\bar{q}}$	q ar q o X	graviton-like tensor with minimal couplings		
2_m^+	gg o X	graviton-like tensor with minimal couplings		
2_{h}^{-}	$gg \to X$	"pseudo-tensor"		

- Possible measure tensor structure, less motivated
 - for Snowmass may stick to a few benchmark models (e.g. above)

• LHC: MELA / BDT techniques, example: CMS expect (observe) 2_m^+ vs SM 0^+ : 1.9σ (2.7 σ) scales to 300/fb LHC \sim 10 σ

Path 2: Mixture in VVH

ZZH, WWH (SM g_1), $Z\gamma H$, $\gamma\gamma H$, ggH (SM g_2), or 0^- (g_4)

$$A_{VV} \propto g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3 f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

When g_1 dominates, f_{g_4} is CP-violating fraction (here $g_i = 1 \leftrightarrow \sigma_i$):

$$f_{CP} = f_{g4} = \frac{|g_4|^2 \sigma_4}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}; \quad \phi_{g4} = \arg\left(\frac{g_4}{g_1}\right)$$

$$f_{g2} = \frac{|g_2|^2 \sigma_2}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}; \quad \phi_{g2} = \arg\left(\frac{g_2}{g_1}\right)$$

• LHC: assuming SM and ignoring g_3

CMS expect (observe) $f_{CP}=0.00\pm0.40~(\pm0.23)$ scales to 300/fb LHC $f_{CP}=0.00\pm0.08$ may include f_{q2} in projections

Mixture in VVH

• Amplitude for $X_{J=0} \to V_1 V_2$

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} M_X^2 + a_2 q_{\mu} q_{\nu} + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

• SM Higgs 0^+ : (a_1) CP \sim few% (a_2) CP $\sim 10^{-10}$? (a_3) CP

3 amplitudes ("experiment") ⇔ 3 coupling constants ("theory")

$$A_{00} = -\frac{m_H^2}{v} \left(a_1 x + a_2 \frac{m_1 m_2}{m_H^2} (x^2 - 1) \right)$$

$$A_{\pm\pm} = +\frac{m_H^2}{v} \left(a_1 \pm i a_3 \frac{m_1 m_2}{m_H^2} \sqrt{x^2 - 1} \right)$$

$$x = \frac{m_H^2 - m_1^2 - m_2^2}{2m_1 m_2}$$

Photon and Muon Colliders

- ullet Polarized beams on $\mu^+\mu^-$ and $\gamma\gamma$ colliders with s-channel production
 - would allow to measure A_{++} vs A_{--} amplitudes $\Rightarrow CP$ fraction
 - benchmark measurements f_{CP} in $\mu^+\mu^-H$ and $\gamma\gamma H$ (not "easily" possible on LHC and e^+e^-)
- ullet even if present, CP violation may be suppressed in ZZH coupling
 - if 0^- coupling to ZZ (same for WW) is suppressed ttH, $\tau\tau H$, $Z\gamma H$ may have large CP-violation on LHC and e^+e^- small- f_{CP} & large-precision vs large- f_{CP} & smaller-precision
 - $-\mu^+\mu^- H$ and $\gamma\gamma H$ would become key measurements on $\mu\mu$ and $\gamma\gamma$
- Feasibility study from $\mu\mu$ and $\gamma\gamma$ collider communities
 - need common convention for the quoted measurement

Path 2: Mixture in $f\bar{f}H$

- Mixture $\tau^+\tau^-H$, $\mu^+\mu^-H$, $b\bar{b}H$, $t\bar{t}H$ harder to measure on $e^+e^-\&pp$
 - possible if polarization of fermion decay (production) is measured e^\pm beam polarization may help
 - feasibility in $H \rightarrow \tau^+ \tau^-$
 - feasibility in $e^+e^-(pp) \rightarrow t\bar{t}H$
- Similar parameterization:

$$A_{f\bar{f}} \propto \frac{m_f}{v} \bar{u}_2 \left(\rho_1 + \rho_2 \gamma_5\right) v_1 = \frac{m_f}{v} \bar{u}_2 \rho \left(\cos \theta + e^{i\phi_{\rho 2}} \sin \theta \gamma_5\right) v_1$$

$$f_{CP} = f_{\rho 2} = \frac{|\rho_2|^2 \sigma_2}{|\rho_1|^2 \sigma_1 + |\rho_2|^2 \sigma_2} = \frac{1}{|\rho_1/\rho_2|^2 \sigma_1/\sigma_2 + 1} = \frac{1}{|\cot \theta|^2 \sigma_1/\sigma_2 + 1}$$

$$\phi_{\rho_2} = \arg\left(\frac{\rho_2}{\rho_1}\right)$$

- deduce from fermion polarization: $A_{\pm\pm} \propto (\rho_2 \pm \beta \rho_1)$

Possible matrix for pp vs. H-factory vs. ILC

• LHC: $gg \rightarrow H$

• H-factory: $ee \rightarrow ZH$ • ILC: $eeZZ \rightarrow eeH$

	LHC 300/fb	LHC 3000/fb	e^+e^- 250 GeV	e^+e^- 1 TeV	
spin-2 Grav.	$\sim 10\sigma$	\gg 10 σ	?	?	
f_{CP} in ZZH	± 0.08	±0.03 (?)	?	?	
f_{CP} in $ au au H$?	?	?	?	
f_{CP} in ttH	?	?	_	?	
f_{CP} in $Z\gamma H$?	?	?	?	

Summary: Spin and Mixture for Snowmass-2013

- We already know many things, but need to focus on projections:
 - -VVH (V=W,Z) couplings at LHC reasonably well covered
 - $-e^+e^-$ expectations and fermion couplings need to quantify better
 - quantify $\mu^+\mu^- \to H$ and $\gamma\gamma \to H$ feasibility of CP measurements

	LHC 300/fb	LHC 3000/fb	e^+e^- 250 GeV	e^+e^- 1 TeV	$\mu^+\mu^-$ 125 GeV	$\gamma\gamma$ 125 GeV
spin-2 Grav.	$\sim 10\sigma$	\gg 10 σ	?	?	?	?
•••		•••				
f_{CP} in VVH	± 0.08	±0.03 (?)	?	?	?	?
f_{CP} in $ au au H$?	?	?	?	?	?
f_{CP} in ttH	?	?	_	?	_	_
f_{CP} in $\mu\mu H$	_	_	_	_	?	_
f_{CP} in $\gamma\gamma H$	_	(?)	_	_	_	?

ONE-SLIDE CONTRIBUTIONS

ATLAS Snowmass Spin/CP studies

- Moriond results suggest the dominant spin-parity J^P=0⁺: ATL-CONF-2013-013, ATL-CONF-2013-029, ATL-CONF-2013-031, CMS-CMS-PAS-HIG-13-002, CMS-PAS-HIG-13-003.
- Snowmass study: sensitivity to CP-mixing, anomalous couplings in H->ZZ^(*)->41.
 - As for the European strategy: generator level + smearing to accommodate for detector effects, event weights for trigger and lepton reconstruction efficiency.

$$A(X \rightarrow VV) \sim \frac{(a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_{\mu} (q_1 + q_2)_{\nu} + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta}) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}}{\text{CP-even}}$$

- Available Monte Carlo generators:
 - JHU (LO): allows to vary a₁, a₂, a₃ independently.
 - MadGraph 5 + aMC@NLO: introduces a single mixing angle between the 1st and the 3^d components of the amplitude.
- Monte Carlo re-weighting: available in JHU (ratio of |M|²); can be introduced in MG5 and aMC@NLO (pre-defined set of weights corresponding to different mixing).
- Observables: it is probably most interesting to estimate the sensitivity to the mixing angle between 1st and the 3^d components and possibly to the phase. f_{a3}?
- Study methods: Matrix element likelihood fit with free parameters, Modeling mixing strength by re-weighting and comparing with JP=0+, Optimal observables analysis, Angular asymmetries.
- Given there is enough taskforce, we can add study of the VBF forward jets and fermionic channels: H->ττ/μμ.

Spin-CP studies of the new boson for Snowmass

Study kinematic distributions of X->VV->4 fermions to extract tensor amplitude structure of production and decay of the new boson.

using JHU generator and MELA method:

- http://www.pha.jhu.edu/spin/
- Phys. Rev. D 81, 075022 (2010)
- Phys. Rev. D 86, 095031 (2012)

Evaluate the sensitivity at future pp and (possibly) e+e- colliders for:

(gen-level studies with smearing+acceptance cuts)

☐ CP mixing studies assuming spin 0

$$A(X_{J=0} \to V_1 V_2) = v^{-1} \left(g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

with present LHC statistics pure 0- ruled out (g_i=0 for i≠4) -> next steps

- test mixed hypotheses with more than one g_i≠0 (with interference included)
- fit directly the fractions and phases of g_i from kinematic distributions Eg: 0.08 precision expected on g₄ fraction with 300 fb⁻¹ at LHC
- Exotic spin scenarios (similar, more complex, formula as above available in cited papers for spin>0) most basic (minimal couplings) scenarios under test at LHC -> next steps
 - test wide range of scenarios (identify the ones with kinematics very similar to 0+ SM case)
 - more model independent approach: production-independent spin tests mixing-independent spin tests

E. Feng (ANL): Higgs CP Fraction

- Matrix element method to measure spin, CP, and couplings in H->ZZ->4I
 - Unbinned maximum likelihood fit to analytical prediction using 3 masses (m_{4l}, m_{12}, m_{34}) and 5 angles $(\cos(\theta^*), \phi_1, \cos(\theta_1), \cos(\theta_2), \Delta \phi)$ from 4 leptons
- Characterize sensitivity to CP-odd fraction projected onto H->ZZ final state by fitting to linear combination of 0⁺ and 0⁻ hypotheses as function of 14 TeV lumi
- CP-odd component corresponds to non-zero g₄ (0) form factor in ME:

$$\begin{split} A(X \to V_1 V_2) &= v^{-1} \bigg(g_1^{(0)} m_V^2 \epsilon_1^* \epsilon_2^* + g_2^{(0)} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} \\ &+ g_3^{(0)} f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4^{(0)} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \bigg), \end{split}$$

- Statistical uncertainty of ~8% (3%) can be achieved with 300 (3000) fb⁻¹ at 14 TeV
 - Includes detector acceptance
 - Generating fastsim for systematics, which should be relatively small
- Additional studies may include non-minimal couplings for spin-2, but lower sensitivity

 ζ_2 is the degree of circular polarization (ζ_3, ζ_1) are the degrees of linear polarization In s-channel production of Higgs:

$$|\mathcal{M}^{H_4}|^2 = |\mathcal{M}^{H_4}|_0^2 \left\{ [1 + \zeta_2 \tilde{\zeta}_2] + \mathcal{A}_1 \left[\zeta_2 + \tilde{\zeta}_2 \right] + \mathcal{A}_2 \left[\zeta_1 \tilde{\zeta}_3 + \zeta_3 \tilde{\zeta}_1 \right] - \mathcal{A}_3 \left[\zeta_1 \tilde{\zeta}_1 - \zeta_3 \tilde{\zeta}_3 \right] \right\}$$

$$== 0 \text{ if CP is conserved}$$

$$== +1 \text{ (-1) for CP is conserved for A CP-Even (CP-Odd) Higgs}$$

is a mixture of CP-Even and CP-Odd states

Possible to search for CP violation in Ž H Ž fermions without having to measure their polarization

In bb, a ≤1% asymmetry can be measure with 100 fb-1 that is, in 1/2 years

arXiv:0705.1089v2